«Педагогическая психология»
Глава 5
ДЕЙСТВИЯ, ВХОДЯЩИЕ В ДЕЯТЕЛЬНОСТЬ УЧЕНИЯ
Все действия, входящие в деятельность учения, можно поделить на два класса:
- общие (не специфические),
- специфические.
Общие виды познавательной деятельности (общие приемы) потому и называются общими, что они используются в разных областях, при работе с разными знаниями. К их числу относятся, например, умение планировать свою деятельность, умение контролировать выполнение любой деятельности и др. К общим видам познавательной деятельности относятся и все приемы логического мышления: они независимы от конкретного материала, хотя всегда выполняются с использованием каких-то предметных (специфических) знаний. К числу логических приемов относятся: сравнение, подведение под понятие, выведение следствий, приемы доказательства, классификации и др. К общим видам деятельности относятся и такие, как умение запоминать, умение быть внимательными, умение наблюдать и др. Условно их можно объединить в группу «психологических»: они изучаются в психологии.
Специфические действия отражают особенности изучаемого предмета и поэтому используются в пределах данной области знаний. Примерами специфических действий могут служить звуковой анализ, сложение и др.
5.1 Начальные логические приемы мышления
Никто не будет спорить с тем, что каждый учитель должен развивать логическое мышление учащихся. Об этом говорится в объяснительных записках к учебным программам, об этом пишут в методической литературе для учителей. Однако конкретной программы логических приемов мышления, которые должны быть сформированы при изучении данного предмета, пока нет. В результате работа над развитием логического мышления школьников идет «вообще» - без знания системы необходимых приемов, без знания их содержания и последовательности формирования. Это приводит к тому, что большинство учащихся не овладевают начальными приемами мышления даже в старших классах школы, а эти приемы необходимы уже младшим школьникам: без них не происходит полноценного усвоения материала.
Приведем данные по диагностике логических приемов мышления у учащихся в конце первого года обучения. Проверялись три приема: подведение под понятие, выведение следствий, сравнение. Все три приема необходимы в первом классе при изучении математики. Оказалось, что только небольшая часть учащихся владеет этими приемами хорошо, у остальных они не сформированы в должной мере.
Больше того, у многих учащихся начальной школы не сформированы и более элементарные логические операции.
Вот посмотрите, как выполняют задания некоторые учащиеся второго класса одной из московских школ. Вначале были предъявлены два совершенно равных квадрата, а затем один из них был разрезан по диагонали на два треугольника, из которых, в свою очередь, был составлен один треугольник.
Приводим диалог с Андреем П., одним из учеников второго класса.
- Андрюша, ты хорошо учишься?
- Да.
- Молодец, скажи, пожалуйста, вот эти фигуры как называются (показываю два квадрата)?
- Квадратики.
- Посмотри, они одинаковые или не одинаковые? Наложи один на другой и хорошо посмотри.
- Одинаковые.
- Одинаковые. Хорошо, значит, квадратики одинаковые, а теперь мы вот этот квадратик разделим на два треугольничка (разрезаю) и из них построим один треугольник. А вот теперь скажи, одинаковые по величине эти фигуры: треугольник и квадрат?
- Они не одинаковые.
- А какая больше?
- Вот эта (показывает на треугольник).
- Ты уверен, что эта больше?
- Да.
К сожалению, во втором классе такие ответы не такое редкое явление. Причина ошибки состоит в неумении ученика дифференцировать отдельные стороны предметов, в результате чего изменение одного свойства (формы фигуры) он принимает за изменение другого (площади фигуры), которое в данном случае оставалось неизменным. Такого рода ошибки учащиеся первого-второго классов делают при работе с разными свойствами предметов. Вот, например, как ведет себя один из учеников второго класса в ситуации другой аналогичной задачи. Ученику предъявляются две совершенно одинаковые бутылочки с длинными узкими горлышками, наполненные подкрашенной водой до одного и того же уровня.
Между учеником и экспериментатором происходит следующий диалог:
- Саша, скажи, пожалуйста, в бутылочках одинаковое количество жидкости или неодинаковое?
- Одинаковое.
- Посмотри внимательно, где тебе кажется меньше, где больше?
- Нигде.
- Значит, одинаково?
- Да.
- Хорошо. А теперь посмотри, что я сделаю: возьму вот эту бутылочку и переверну (экспериментатор ставит одну из бутылочек на горлышко). А теперь одинаковое количество жидкости в бутылочках или нет?
- Нет.
- А где меньше, где больше?
- Здесь больше. (Показывает на перевернутую бутылочку).
- Ты уверен в этом, Саша?
- Да.
- А если я опять поставлю бутылочку вот так (экспериментатор ставит бутылочку на донышко). А теперь как?
- Поровну.
- А если я теперь переверну первую бутылочку (первая бутылочка ставится на горлышко).
- Здесь (показывает на первую бутылочку).
- Ты уверен?
- Да.
Кажется, так очевидно, что вода никуда не отливалась, и вдруг, по мнению ребенка, ее становится меньше по количеству то в одной бутылочке, то в другой. Как и в первом случае, ученик не дифференцирует два свойства: количество жидкости и ее уровень в бутылочке, который меняется при перевертывании последней.
Если эти опыты повторить в первом - втором классах любой другой школы, обязательно найдется значительная группа учеников, которые будут совершать точно такие же ошибки.
В старших классах подобные логические ошибки исчезают, но, к сожалению, сохраняются многие другие. Так, например, простейшие задачи на распознавание объектов, относящихся к понятиям с дизъюнктивной структурой признаков (или - или), вызывают затруднения у учащихся вплоть до окончания школы. Вот одна из таких задачек:
«Женщина подходит к одному из членов вашего коллектива и говорит: «Я тебе мать, а ты мне не дочь». Может быть такая ситуация?» Как правило, учащиеся отвечают, что так быть не может. Иногда начинают придумывать особые ситуации:
«Может, ребенка взяли из детдома» и т.д. Интересно, что ошибки допускают не только девочки, но и мальчики, для которых такая ситуация отражает реальное положение: они не дочери своим матерям.
Особенно большие затруднения вызывает распознавание объектов в задачах с неопределенным составом условий, т.е. когда ответ и не положительный, и не отрицательный, а неопределенный: может, объект относится к данному классу, а может, и нет, так как в условии нет сведений о некоторых свойствах из числа необходимых.
Эти задачи такого типа: «Даны два угла с общей вершиной. Один из них равен 100°, другой - 80°. Будут ли эти углы смежными?»
Или: «Даны два угла с общей вершиной, равные друг другу. Будут ли они вертикальными?»
В первой задаче ничего не сказано об общей стороне: есть она у данных углов или ее нет. В силу этого однозначный ответ дать нельзя: если углы имеют общую сторону, то они будут смежными, а если не имеют - то не будут.
Во второй задаче нет данных о сторонах углов: продолжают они друг друга или нет. Если стороны одного продолжают стороны другого, то углы будут вертикальными, а если не продолжают - будут два равных прилежащих угла.
В исследовании М.Б. Воловича, проведенном в ряде московских школ, в том числе в одной школе с математической специализацией, такие задачи были даны 232 хорошо и отлично успевающим ученикам восьмого-девятого классов, обучающихся у восьми разных преподавателей. Около 90% учащихся дали неверные ответы. Они считали, что данные углы подходят под указанные в задачах понятия. На вопрос, почему они считают, что данные углы смежные, учащиеся отвечали: «Потому, что они в сумме составляют 180°». На вопрос, почему они считают, что во второй задаче даны вертикальные углы, отвечали: «Потому что они равные».
Как видим, школьники опираются не на систему признаков, указанную в определении, а лишь на отдельные признаки. В то же время определение этих понятий они знают. Следовательно, учащиеся определение запомнили, но работать с ним не научились.
Аналогичные ошибки ученики делают и на материале русского языка. Например, на вопрос: «слово изменяется по падежам, числам. Будет ли оно существительным?» - многие учащиеся отвечают утвердительно, что неверно, так как этими признаками обладает не только существительное, но и прилагательное.
Причина всех этих ошибок - неумение применить логический прием подведения под понятие. Этот прием широко используется в жизненной практике людей, причем человек нередко встречается и с неопределенными ситуациями, когда главный вопрос состоит именно в том, может ли быть решена задача при данных условиях. Примером может служить диагноз врача: чаще всего ошибки объясняются тем, что в ситуации неопределенности, т.е. когда возможны несколько болезней, врач без получения сведений о недостающих признаках ставит диагноз.
Учащиеся допускают еще больше ошибок при выполнении классификаций, при выведении следствий из данных посылок. В то же время, как показывают исследования, многие из этих приемов учащиеся могут успешно усвоить уже в начальной школе, если работу вести планомерно и целенаправленно. Но с чего начать? В каком порядке формировать?
Естественно, что с любого логического приема работу начинать нельзя, так как внутри системы логических приемов мышления существует строго определенная последовательность, один прием строится на другом.
Вернемся к приему подведения под понятие и посмотрим, можно ли начинать формирование логических приемов мышления с него. Для того чтобы решать вопрос о принадлежности предмета к данному понятию, надо установить наличие у этого предмета системы необходимых и достаточных признаков. А это означает, что ученики к этому времени уже должны быть знакомы с понятиями необходимый признак и признак достаточный. Но эти понятия, в свою очередь, опираются на понятие существенный признак. Следовательно, учащиеся должны уметь дифференцировать признаки на существенные и несущественные. Последние, наконец, предполагают владение понятием признак, свойство и умением выделять в предметах различные свойства. Как видим, усвоение приема подведения под понятие предполагает усвоение целой системы других логических знаний и операций: необходимых и достаточных свойств, понимание того, чем отличается необходимое свойство от достаточного, что такое вообще свойства, как их выделять в предмете, чем отличается свойство существенное от свойства несущественного и др.
Значит, нельзя начинать формирование логического мышления с приема подведения под понятие.
С чего же начинать?
Первое, чему необходимо научить учащегося, - это умению выделять в предметах свойства. Дети первого класса обычно выделяют в предмете всего два-три свойства, в то время как в каждом предмете бесконечное множество различных свойств. Так, если покажете детям карандаш и спросите: «Что о нем можно сказать, какой он?», - ученики ответят, что он красный (или назовут какой-то другой цвет), круглый (если он имеет цилиндрическую форму), - и все. Больше, чем два-три свойства, они не могут выделить. Поэтому необходимо специально обучать детей умению видеть в предмете множество свойств. Для этого полезно показать им прием по выделению свойств в предметах - прием сопоставления данного предмета с другими предметами, обладающими другими свойствами. Заранее подбирая для сравнения различные предметы и последовательно сопоставляя с ними исходный, можно постепенно научить детей видеть в предметах множество таких свойств, которые ранее были от них скрыты.
Как только дети научатся выделять в предметах множество различных свойств, можно переходить к следующему компоненту логического мышления - формированию понятия об общих и отличительных признаках предметов1.
1 Методику формирования логических знаний и действии см. в главах 9 и 10 данной книги.
После того как учащиеся научатся выделять в предметах общие и отличительные свойства, можно сделать следующий шаг - научить детей отличать в предметах существенные (важные) свойства, с точки зрения определенного понятия, от свойств несущественных (неважных), второстепенных. Так, если вы знакомите детей с понятием «цветок», то покажите им, что цветы могут отличаться друг от друга очень многими свойствами: цветом, формой, величиной, количеством лепестков и т.д. Но у всех у них остается неизменным одно свойство: давать плод, что и позволяет называть их цветами. Если мы изменим это свойство - возьмем другую часть растения, - то ее мы уже не сможем назвать цветком. Это будут листья, ветки и т.д. Таким образом, если изменить несущественные свойства, предмет будет относиться по-прежнему к тому же понятию, а если изменить существенное свойство, предмет становится другим.
Показав это на нескольких примерах, важно указать, что таким путем можно отличить в предметах свойства существенные (важные) от свойств несущественных (неважных). После этого учащимся обязательно надо дать упражнения на практическое использование этого приема. Разумеется, при этом надо выбирать такие понятия, которые доступны пониманию детей. Особенно важно при этом показать, что не все общие свойства в предметах являются свойствами существенными. Так, при работе с цветами легко видеть, что они, как правило, характеризуются яркостью, их цвет резко отличается от цвета других частей растения. Вместе с тем это общее для большинства цветов свойство не является существенным. На этом моменте следует особенно сосредоточить внимание детей, так как они легко принимают любое общее свойство предметов за свойство существенное. Причем эту ошибку допускают даже старшеклассники. Следовательно, надо показать, что любое существенное свойство является общим для данного класса предметов, но далеко не всякое общее их свойство является существенным.
Мы рассмотрели два логических приема: прием сравнения предметов, который дает возможность выделять множество свойств в предметах, и прием изменения свойств, который позволяет отличать свойства существенные от свойств несущественных. Как мы видели, эти приемы используются для ознакомления учащихся с рядом логических понятий (знаний): свойства, свойства отличительные и общие, свойства существенные и несущественные. Другими словами, логические знания - продукт выполнения определенных действий. И, наоборот, усвоение логических приемов мышления предполагает опору на определенные логические знания.
Так, понятия об общих и существенных признаках предметов оказываются необходимыми для усвоения целого ряда более сложных логических приемов. Некоторые из них будут рассмотрены ниже.
Прежде всего вернемся к приему сравнения. Когда мы предлагали использовать этот прием для выделения учащимися различных свойств в предметах, то указывали, что предметы для сравнения должны подбираться учителем, никаких специальных требований к сравнению не предъявляли. После знакомства учеников с различными видами свойств предметов прием сравнения можно формировать уже на более высоком уровне. Если этого не сделать, то у многих школьников он останется на житейском уровне: без осознания содержания этого приема и без умения произвольно и обоснованно использовать его как полноценное познавательное средство.
Анализ учебников и программ показывает, что действие сравнения необходимо учащимся уже в первом классе. Вместе с тем если его не сделать предметом специального усвоения, то оно оказывается не усвоенным большинством школьников до конца учебного года. Оказалось, что многие дети не понимают, что значит сравнить. Одни просто отказываются от ответа, а другие говорят, что сравнить - это «сказать, что больше, а что меньше». Только небольшой процент учащихся понимают смысл этого действия правильно. Наибольшие трудности дети испытывают при выделении основания для сравнения предметов. Они часто ориентируются не на общий для сравниваемых объектов признак (цвет, форма, длина и т.д.), а на конкретные количественные и качественные показатели этого признака. В силу этого одни ученики считают, что сравнивать, например, по цвету можно только предметы, имеющие один и тот же цвет, но с разной мерой его выраженности («более красный», «менее красный»). Другие, наоборот, считают, что сравнивать предметы по цвету можно только тогда, когда цвет у них разный. Это означает, что учащиеся еще не осознают цвет как общую характеристику предметов, а мыслят лишь на уровне конкретных разновидностей цвета. С этим надо считаться и постепенно учить детей видеть у разноокрашенных предметов, имеющих разную форму и т.д., общее свойство - наличие цвета, формы и т.д.
Начинать работу по формированию приема сравнения надо с выделения содержания этого приема, т.е. с выделения слагающих его действий. Сравнение будет корректным только тогда, когда оно используется, во-первых, при сравнении однородных предметов и явлений действительности (растений, зданий, животных и т.д.); во-вторых, когда сравнение производится по существенным признакам. Сравнение предполагает умение выполнять следующие действия:
- выделение признаков у объектов;
- установление общих признаков;
- выделение основания для сравнения (одного из существенных признаков);
- сопоставление объектов по данному основанию.
Если учитель уже научил детей выделять в предметах общие и существенные свойства, то новыми будут лишь два последних компонента: выбор признака, по которому предполагается сравнение, и проведение сравнения именно по этому признаку. Учитывая вышесказанное, особое внимание необходимо обратить на выбор основания для сравнения.
Следует также подчеркнуть, что сравнение может идти как по качественным характеристикам того или иного свойства (например, цвету, форме), так и по количественным характеристикам: больше - меньше, длиннее - короче, выше - ниже и т.д.
При количественном сравнении необходимо наличие единого образца (меры), с помощью которой и производится сравнение. Это очень важно подчеркнуть, так как учащиеся нередко в средних и даже старших классах это требование не учитывают: сравнивают, например, дроби без приведения к общему знаменателю; аналогичную ошибку школьники допускают и при работе с метрической системой мер.
Вначале в качестве меры может выступать один из сравниваемых предметов, в котором предварительно выделяется то свойство, по которому эти предметы будут сравниваться. Например, учитель может вызвать двух учеников и предложить классу сравнить их по росту. На вопрос учителя: «Как это сделать?» - ученики обычно отвечают: «Пусть померяются». В этом случае один из сравниваемых учеников выступает в качестве меры. Такое сравнение называется непосредственным. На его основе формируется сравнение опосредованное. Особенность этого вида сравнения состоит именно в том, что сравнение предметов происходит не непосредственно, а с помощью меры - опосредованно. При обучении детей умению работать с мерой очень важно, чтобы они осознали адекватность (соответствие) меры тем свойствам, по которым происходит сравнение: предметы по длине сравниваются с помощью меры длины, по весу - с помощью меры веса и т.д.
Следующий шаг в формировании логического мышления учащихся - знакомство их с признаками необходимыми и достаточными. Научить детей различать эти признаки не так просто, так как объективно их отношения весьма сложны. Нередко даже взрослые думают, что всякий достаточный признак является одновременно признаком необходимым. Фактически же это не так. Вот один пример. Если у человека высокая температура, то все понимают, что человек болен. Это означает, что признак «высокая температура» является достаточным для признания человека больным. Однако этот признак вовсе не является необходимым, так как немало болезней, протекающих без температуры. Следовательно, отсутствие температуры не означает отсутствие болезни: человек может быть болен, а высокой температуры у него нет.
Даже в старших классах учащиеся допускают множество ошибок, связанных с неумением дифференцировать эти два вида признаков. В исследовании Г.И. Харичевой учащимся седьмых классов были предложены специальные задания, выполнение которых предполагает понимание характера признаков - необходимые, достаточные, необходимые и одновременно достаточные. Вот одно из этих заданий:
«Известна теорема: «Диагонали ромба взаимно перпендикулярны». Объясните, какая из двух формулировок этой теоремы справедлива: 1. Если четырехугольник ромб, то его диагонали взаимно перпендикулярны. 2. Если диагонали четырехугольника взаимно перпендикулярны, то данный четырехугольник есть ромб».
Результаты выполнения заданий показали, что только 24% учащихся справились с ними. Что касается указанного задания, то его правильно выполнили 50% школьников (выбрали в качестве правильного первое определение). 26% учащихся ответили, что оба предложенных определения являются правильными. Характерно, что эти ученики вообще не видели разницы в предложенных определениях. Они считали, что в обеих формулировках говорится об одном и том же, «только слова переставлены местами». Это означает, что они не понимают разницы между признаками необходимыми и признаками достаточными. Во втором определении указанные признаки являются необходимыми для ромба, но они не достаточны для его определения, так как этим требованиям удовлетворяет не только ромб, но и делтоид.
Ошибки допускаются при работе не только с математическим, но и любым другим материалом. Так, например, учащимся восьмых-девятых классов было предложено следующее задание:
«Докажите, какие из данных слов - «краснота», «камни», «большой», «гвоздь» - являются прилагательными, а какие не являются».
Один из учеников совершенно правильно воспроизвел определение прилагательного, но применить его корректно не смог. Вот его ответ: «Надо проверить по вопросу «какой». Если слово отвечает на вопрос «какой?», тогда оно прилагательное». Экспериментатор обратил внимание ученика на то, что в определении указано еще одно требование: прилагательные обозначают признаки предметов. «Как быть с этим требованием? Может быть, это лишнее требование и его можно исключить из определения», - продолжает экспериментатор. Ученик растерялся и выполнять задание отказался: «Ну, тогда я не знаю».
В данном случае ситуация аналогична предыдущей: ученик путает необходимые и достаточные признаки. То, что прилагательное отвечает на вопрос «Какой?» - это признак необходимый: все прилагательные отвечают на этот вопрос. Любое слово, которое не отвечает на этот вопрос (не имеет этого признака), прилагательным не является. Однако одного этого признака недостаточно, чтобы выделить слова, являющиеся прилагательными. В самом деле, на вопрос «какой?» отвечают и слова, являющиеся причастиями: краснеющий, выходящий, бегущий и т.д. Вот почему для выделения прилагательных необходимо учитывать два необходимых свойства, которые в совокупности оказываются достаточными для выделения слов-прилагательных.
Непонимание разницы между необходимыми и достаточными, необходимыми и одновременно достаточными признаками - широко распространенное явление среди учащихся старших классов, потому что эти важные логические знания не были предметом специального усвоения. Вместе с тем указанные виды признаков могут быть усвоены уже в начальной школе. Естественно, ученики при этом должны не просто заучить определения этих признаков, а научиться работать с ними, т.е. выполнять определенные логические приемы мышления. Прежде всего необходимо научить детей выводить следствия из факта принадлежности предмета к данному понятию. Это действие связано с понятием необходимых свойств предмета, поэтому его выполнение дает возможность овладеть этой категорией свойств.
Познакомить с этим действием можно с помощью хорошо известных учащимся предметов. Например, учительница, обращаясь к классу, говорит: «Ребята, я принесла карандаш. Он у меня в портфеле. Вы его никогда не видели. Можете ли вы что-нибудь сказать о нем?» Дети дают разные ответы: одни называют грифель, другие форму, третьи - корпус, который держит грифель, четвертые - цвет и т.д. Ответы детей анализируются с точки зрения обязательности у карандашей названного детьми признака. В результате проведенной работы выделяются два признака, без которых не может быть ни одного карандаша: наличие грифеля и какого-то корпуса, в котором грифель закреплен.
Затем учительница говорит, что признаки, которые в обязательном порядке есть у всех предметов данного класса, называются необходимыми. Отсутствие этих признаков приводит к тому, что предмет оказывается не относящимся к данному классу предметов. Так, если карандаш не будет обладать признаком - иметь корпус, то он из карандаша превратится в грифель.
После этого учащиеся выполняют еще ряд заданий на выведение необходимых свойств. При этом, естественно, используется и учебный материал. Так, в начальной школе ученики знакомятся с понятием отрезок. Учитель может предложить детям задание: «Известно, что линия является отрезком. Скажите, какими свойствами обладает эта линия в обязательном порядке?» Учащиеся должны указать следующие свойства: а) это часть прямой; б) она ограничена с двух сторон. Наличие этих свойств вытекает из факта принадлежности линии к понятию отрезок прямой.
Графически действие выведения следствий может быть изображено так:
Количество свойств, которые могут быть при этом указаны у предмета, зависит от содержания самого понятия и от того, насколько продвинулись учащиеся в изучении его. Так, например, если школьники только приступили к изучению понятия треугольник, то они смогут указать лишь на те его свойства, которые содержатся в определении: а) замкнутая фигура; б) состоит из трех отрезков прямой. После изучения всех теорем, относящихся к треугольнику (в более старших классах), учащиеся смогут назвать дополнительные свойства: сумма внутренних углов равна 180°; сумма двух сторон больше третьей и т.д.
Таким образом, прием выведения следствий должен быть введен в начальной школе, а формирование его должно продолжаться во всех последующих классах.
После знакомства с необходимыми признаками вводится понятие признаков достаточных и признаков необходимых и одновременно достаточных. Здесь важно показать, что не всякий необходимый признак является достаточным. Нередко учащиеся допускают подобные ошибки. Например, четырехугольник, имеющий хотя бы два прямых угла, они считают прямоугольником. Это неверно, так как этими свойствами обладает и прямоугольная трапеция. И для нее, и для прямоугольника - это свойства необходимые, но не достаточные. И наоборот, не всякое достаточное свойство является необходимым, на что уже было указано раньше.
Вот теперь мы подошли к действию подведения под понятие. Отнесение любого объекта к тому или иному понятию предполагает установление наличия у этого объекта признаков данного понятия, достаточных или необходимых и одновременно достаточных.
Как видим, формированию этого приема предшествует усвоение целого ряда логических знаний и требующих их использования действий. Если же этого не сделать, то полноценного усвоения приема подведения под понятие не произойдет.
Что же представляет собой этот прием, какую конкретную деятельность должен выполнить ученик, чтобы безошибочно подводить предметы под то или иное понятие? Во-первых, учащиеся должны научиться выделять понятие, под которое требуется подвести данный объект. Рассмотрим случай подведения равностороннего треугольника под понятие равнобедренный треугольник. Последнее и будет таким понятием. Во-вторых, надо установить, при каких условиях данный объект может относиться к данному понятию. В нашем случае: при каких условиях треугольник может быть равнобедренным. Известно, что для этого он должен иметь две равные стороны. От учащихся потребуются знание определения равнобедренного треугольника и умение вывести из него систему необходимых и достаточных признаков. Как показывает опыт, ученики, зная определение, не умеют анализировать его.
После этого ученику надо установить, обладает ли данный объект этими признаками. В нашем случае: обладает ли равносторонний треугольник признаками равнобедренного. Для этого необходимо воспроизвести определение равностороннего треугольника, сопоставить данные в нем признаки с требуемыми, для чего также необходимо специальное обучение.
Важно показать учащимся необходимость учета именно всей системы необходимых и достаточных признаков. Из школьной практики известно, что одна из типичных ошибок учащихся состоит в том, что они при подведении заданных объектов под соответствующие понятия учитывают лишь некоторые признаки из числа необходимых и достаточных и поэтому относят к понятию и такие предметы, которые имеют с объектами данного класса лишь некоторые общие признаки.
Так, в одном из опытов, проведенном в московской школе, учащиеся седьмого класса безошибочно воспроизводили определение окружности, но когда им предъявили эллипс, замкнутую кривую произвольной формы и спросили, можно ли эти фигуры назвать окружностью, - они ответили утвердительно. Беседа с учениками показала, что при распознавании окружностей они опираются не на всю совокупность признаков, которые указаны в определении окружности и которые они заучили, а только на замкнутость кривой и наличие во внутренней области точки, которую они называют центром. Аналогично учащиеся шестых-седьмых классов нередко смежными углами соглашаются назвать любые два угла, составляющие в сумме 180°. Они хорошо знают, что любые смежные углы обладают этим свойством, т.е. они усвоили, что это свойство является необходимым для всех объектов, относящихся к данному классу предметов. Но школьники его используют и как достаточное: считают, что все объекты, обладающие этим свойством, относятся к данному классу предметов, что уже неверно, так как этим свойством обладают и объекты, не относящиеся к данному классу. Так, прямые вертикальные углы также в сумме составляют 180°, а смежными не являются.
В связи с этим особенно важно специально поработать над системой свойств, в совокупности являющихся достаточными для определения объектов данного класса. При этом обязательно надо показать, что учет лишь одного из свойств данной системы не позволяет определить объекты однозначно, так как это свойство может быть общим для предметов разных классов.
Все указанные компоненты приема подведения под понятие связаны с определенными предметными знаниями и специфическими действиями, характерными для данного предмета; в нашем случае - геометрии. В самом деле, учащиеся, проверяя наличие искомых признаков у данного объекта, могут использовать различные методы, характерные для математики, химии, русского языка и т.д. Но во всех случаях общие требования к подведению (проверка наличия определенной системы признаков) задает логика. Логика же задает требования и к оценке полученных результатов. Их можно сформулировать следующим образом. Предмет относится к данному понятию в том и только в том случае, когда он обладает всей системой необходимых и достаточных признаков, что можно изобразить так:
признак 1 «+»
признак 2 «+»
……… +
……..
признак n «+»
Если предмет не обладает хоть одним из них, то он не относится к данному понятию, что можно изобразить так:
признак 1 «+» (?)
признак 2 «+» (?)
………… _
признак m «-»
признак n «+»
При этом следует отметить, что отрицательный ответ будет при отсутствии любого признака.
Если же нет положительной информации хотя бы про один признак, то при наличии всех остальных признаков ответ остается неопределенным: неизвестно, принадлежит или не принадлежит предмет к данному понятию. Это можно изобразить так:
признак 1 «+»
признак 2 «+»
………… ?
признак m «?»
признак n «+»
Правило подведения под понятие и умение корректно пользоваться им при работе с любыми понятиями относится к логическому компоненту данного приема.
Учащиеся, получая задания на подведение объектов под различные понятия, постепенно усваивают этот важный прием. При работе с ним особое внимание надо уделить третьему случаю: ответ неопределенный. Задания с неопределенными условиями неизменно дают большой процент ошибок. Этот случай трудней усваивается, чем другие, даже при целенаправленной работе. Отсутствие указаний о том или ином признаке учащиеся обычно расценивают как отсутствие самого признака. Например, в задаче: «Даны две пересекающиеся прямые. Будут ли они перпендикулярными?» - учащиеся дают отрицательный ответ. Они мотивируют это тем, что в условии не сказано, что прямые пересекаются под прямым углом. Ответ неверный, так как в условии в равной мере не сказано, что прямые пересекаются не под прямым углом. Следовательно, об этом признаке мы не получаем никакой информации, что и создает ситуацию неопределенности: может быть, угол прямой, а может быть, не прямой. В силу этого правильный ответ в таких задачах: «Неизвестно».
Говоря о действии подведения под понятие, мы подчеркивали, что объект относится к тому или иному понятию тогда и только тогда, когда обладает всей системой необходимых и одновременно достаточных признаков. Но так бывает только при подведении под понятия, где признаки связаны союзом «и - и» (конъюнктивная структура понятия). Кроме них, есть понятия с другой структурой признаков: связанных союзом «или - или» (дизъюнктивная структура признаков). В этом случае правило подведения под понятие другое: для отнесения предмета к данному классу предметов достаточно наличия лишь одного из указанных признаков. При работе с учащимися эти два случая подведения под понятие необходимо различать. Если же этого не делать, то у учащихся может не сформироваться правильных приемов подведения, и они будут ошибаться.
Как мы видели, задачи на подведение под понятие с дизъюнктивной структурой признаков вызывают у учащихся серьезные трудности. Они доставляют немало хлопот и взрослым, если они не владеют этим приемом. Характерно, что задачи: «Я тебе мать, а ты мне не дочь», «У двух зрячих есть слепой брат, но у него нет братьев» и т.п. - нередко относят к головоломкам.
Какой же логический прием подведения под понятие требуется в подобных случаях? Схематически характер связей в данном случае следующий:
Если в ранее показанном случае отсутствие хоть одного признака означало непринадлежность предмета к данному понятию, то в данном случае это не так: если нет признака В, то мы не имеем права делать отрицательный вывод. Мы должны обратиться к признаку С. Так, в случае понятия «мать» отсутствие дочери не мешает быть матерью, для этого достаточно иметь сына.
Правило подведения под понятие с дизъюнктивной структурой признаков уже другое: «Предмет относится к данному понятию, если он обладает хотя бы одним признаком из числа оказанных. Если же предмет не обладает ни одним из этих признаков, то он не относится к данному понятию. Если ни про один из признаков нет точных сведений (неизвестно, есть он или его нет), то мы не может сказать, относится или не относится этот предмет к данному понятию».
Схематически это правило можно изобразить так:
1. признак 1 «-»
признак 2 «-»
…………. «-» +
…………. «-»
признак n «+»
2. признак 1 «-»
признак 2 «-»
…………. «-» -
…………. «-»
признак n «-»
3. признак 1 «?»
признак 2 «?»
………. «?» ?
………. «?»
признак n «?»
4. признак 1 «?»
признак 2 «-»
……… «?» ?
……… «-»
признак n «?»
Знакомство с этим приемом можно начать с указанных протых житейских примеров, а потом уже перейти и к учебному материалу. Так, когда учащиеся изучают виды предложений, то ряд понятий имеет дизъюнктивную структуру признаков. Примером могут служить неполные предложения. Для отнесения предложения к этому понятию достаточно одного из двух признаков, соединенных союзом «или - или»: или нет подлежащего, или нет сказуемого. Таким образом, этот прием мышления необходим для успешного усвоения учебного материала и его формирование следует начинать уже в начальной школе.
Если при усвоении нескольких понятий (одни из которых имеют конъюнктивную структуру признаков, а другие - дизъюнктивную) учитель научит учеников логически строго выполнять действие подведения под понятие, то в дальнейшем это действие они будут успешно использовать при работе с любыми понятиями.
Уже в начальной школе можно приступить к работе над определениями. Но до этого дети должны усвоить отношения между родовыми и видовыми понятиями. При этом особое внимание следует обратить на то, что видовое понятие обязательно обладает всеми свойствами родового, а родовое является следующей ступенью обобщения. При этом следует отметить, что в определение входят только необходимые и одновременно достаточные признаки.
Без понимания видо-родовых отношений учащиеся не смогут полноценно усвоить программный материал. Так, уже при обучении детей звуковому анализу учитель вводит целую систему видо-родовых отношений: вначале вводится понятие о звуке, затем - о гласных и согласных звуках, а согласные, в свою очередь, делятся на мягкие и твердые. Как показал наш опыт работы в одном из детских садов г. Москвы (детсад № 936), дети шести лет способны понять видо-родовые отношения. Характер этих отношений можно зафиксировать в виде трех цветных кружков, вписанных один в другой. Например, желтый круг означает все множество звуков, а красный круг внутри желтого - означает гласные звуки, зеленый круг на фоне желтого - согласные звуки, а мягкие и твердые согласные можно обозначить кругами разного цвета на фоне кругов, обозначающих согласные. В этом случае дети наглядно будут видеть, что мягкие (твердые) согласные - это звуки, являющиеся и согласными, и звуками.
Желательно познакомить учащихся и с отношениями соподчинения. Так, в курсе природоведения можно показать, что к понятию лиственных деревьев относятся самые разные виды, а лиственные, в свою очередь, соподчинены с хвойными: их вместе объединяет понятие «дерево». Все это заложит основу для формирования более сложных приемов логического мышления, в том числе - для понимания структуры определений, с которыми ученики работают на протяжении всего школьного обучения.
В школе учащийся не знакомится с логической структурой определений: он просто заучивает огромное число различных конкретных определений. И если ученик что-то забывает в определении, то не может путем логического рассуждения восстановить забытое, так как не знает структуры определений, не владеет правилами их построения.
Даже в старших классах учащиеся теряются, когда перед ними встает задача по оценке предложенных определений. Так, в исследовании Н.А. Подгорецкой ученикам десятых классов было предложено 20 определений простейших геометрических понятий: ромб, квадрат, прямоугольник, параллелограмм, четырехугольник. Среди предложенных определений были как правильные, так и ложные. Школьники должны были указать как те, так и другие. Ошибочные определения содержали такие дефекты, как пропуск ближайшего родового понятия (определение квадрата, например, как геометрической фигуры), наличие только лишь необходимых признаков, неточное указание видовых признаков и др.
Оказалось, что даже хорошо и отлично успевающие учащиеся в среднем дали 65% правильных ответов, остальные их ответы были ошибочными. Например, многие учащиеся указали как верное такое определение параллелограмма: «Параллелограммом называется четырехугольник, две противоположные стороны которого параллельны». Это определение ошибочное, так как указанные в нем признаки не позволяют отличить параллелограмм от трапеции. Аналогично определение квадрата как геометрической фигуры, все стороны и все углы которой равны между собой, многие учащиеся признали правильным, что неверно. Их не смутило то, что квадрат определяется не через ближайший род (прямоугольник), а через весьма отдаленное понятие - геометрическая фигура. Учащиеся делали ошибки как на расширение, так и на сужение объема определяемых понятий.
Таким образом, видо-родовые отношения понятий, логические правила определений должны войти в программу формирования логического мышления учащихся.
Следующий логический прием, который широко используется в процессе обучения и без которого невозможно полноценное мышление человека, - прием выведения следствий с соблюдением требований закона контрапозиции. Этот прием, как и предыдущие, также обычно не выступает в школе в качестве предмета специального усвоения. В силу этого далеко не все учащиеся даже старших классов понимают, что одно и то же следствие может быть связано с разными основаниями, и поэтому от наличия следствия нельзя переходить к утверждению наличия основания. Так, учащиеся правильно указывают, что если углы смежные, то их сумма равна 180°. Но нельзя утверждать, как это делают некоторые ученики, обратное: если сумма углов равна 180°, то они являются смежными (прямые вертикальные углы равны в сумме 180°, но они не являются смежными). Одно и то же следствие (сумма углов 180°) имеет разные основания.
Учащимся восьмого класса были предложены пары посылок, из которых требовалось сделать выводы. Вот некоторые из них: «Если у человека повышена температура, то он болен. У человека не повышена температура». «Если данный четырехугольник является ромбом, то его диагонали взаимно перпендикулярны. Данный четырехугольник не является ромбом».
Подавляющее большинство учащихся и в первом, и во втором случае дали неверные ответы: они сделали вывод, что человек, не имеющий повышенной температуры, не болен, и что у данного четырехугольника диагонали не взаимно перпендикулярны.
Суть их ошибки состоит в том, что они сделали вывод с нарушением закона контрапозиции. В чем состоит этот закон? Этот закон нам указывает, когда мы имеем право делать вывод, а когда не имеем.
Для удобства работы изобразим сущность закона контрапозиции схематически.
1. Если А, то В 2. Если А, то В
Дано А Дано не В
Вывод: В Вывод: не А
3. Если А, то В 4. Если А, то В
Дано не А Дано В
Вывод сделать нельзя Вывод сделать нельзя
Первый случай простой: если имеет место А, то из этого следует В. Нам известно, что А налицо. Следовательно, В будет иметь место в обязательном порядке (необходимо следует). Во втором случае известно, что В отсутствует. Но если отсутствует В, которое есть необходимый признак А, то, естественно, мы имеем право сделать вывод о том, что нет и А.
В двух последних случаях вывода сделать нельзя по указанным данным. В самом деле, известно, что есть В. Это следствие. Известно, что А имеет обязательно следствие В, но это вовсе не означает, что только А имеет такое следствие. Поэтому мы не можем сделать вывод, что в этом случае есть А. Аналогично в последнем случае известно, что нет А, но в силу только что сказанного нельзя утверждать, что нет и В, так как оно может быть следствием другого основания. Но именно эту ошибку и допустили ученики. В самом деле, если у человека высокая температура, то можно сделать вывод, что он болен. Но вывод о заболевании можно сделать и на другом основании. Отсутствие высокой температуры вовсе не достаточно для заключения об отсутствии болезни: очень часто болезнь протекает без температуры. Аналогично положение и во втором случае.
Умение правильно делать выводы надо формировать с первого класса. Для этого учитель может использовать такие, например, задания: «Ребята, вы хорошо знаете, что зимой березки стоят без листьев. Если вы увидели березку без листьев, можете вы сказать, что на улице зима?» Или: «Мы знаем, что если идет дождь, то тротуары сырые. Представьте себе, что вы утром вышли из дома и увидели на тротуаре лужицы. Можно ли утверждать, что был дождь?» Учащиеся обычно дают разные ответы. Их следует проанализировать и объяснить: почему они верные или неверные.
Необходимо постепенно подвести школьников к обобщенному выражению закона контрапозиции и дать его схематическую запись. При этом важно показать ученикам, что форма «если, то» не всегда есть связь основание-следствие, она может быть условной связью: например, «Если я закончу работу пораньше, то прочитаю эту книгу». Наличие времени не есть причина, по которой человек читает книгу: это лишь условие, при котором он совершит это действие, имеющее свою причину. В тех случаях, когда «если, то» отражает объективную, закономерную связь явлений, следствие обязательно будет иметь место. В самом деле, если четырехугольник является ромбом, то его диагонали всегда перпендикулярны. В случае условной связи такого обязательного следования нет. В приведенном примере человек может закончить работу тогда, когда намечал, и все-таки книгу не прочитать. Может случиться что-то непредвиденное (плохо себя почувствовал, возникла необходимость выполнить какую-то работу и т.д.).
Очень важным приемом логического мышления, используемым в процессе всего школьного обучения, является также прием классификации. Часто этот логический прием оказывается не сформирован даже у людей с высшим образованием.
Специальное исследование Н.А. Подгорецкой умения проводить классификацию старшеклассниками, а также людьми, уже окончившими среднюю школу, показало, что этот прием усвоен ими плохо. Так, только 20% старшеклассников смогли правильно выбрать критерий для классификации, ни один учащийся не сумел соблюсти координацию объема и содержания классифицируемых классов объектов.
В задании на классификацию видов треугольников были допущены следующие типичные ошибки:
- смешение критериев классификации на одном уровне (делили треугольники, например, на прямоугольные, равнобедренные и равносторонние);
- сужение объема понятий классификации (многие ученики не указали вида разносторонних треугольников);
- нарушение иерархии: большая часть старшеклассников не понимает, что равносторонний треугольник является частным случаем равнобедренного.
Аналогичные ошибки были допущены при классификации видов предложений, видов поверхности суши.
Все это говорит о том, что без специальной работы прием классификации усваивается неудовлетворительно. В состав этого приема входят такие действия, как выбор критерия для классификации; деление по этому критерию всего множества объектов, входящих в объем данного понятия; построение иерархической классификационной системы.
Естественно, что формирование этого приема должно происходить постепенно, на материале разных учебных предметов.
Не останавливаясь на других приемах логического мышления, укажем, что все рассмотренные нами необходимы для полноценного усвоения изучаемых в школе предметов: действия, стоящие за этими приемами, и будут служить средством усвоения различных предметных знаний. Важно отметить и то, что на основе этих приемов можно формировать и более сложные методы логического мышления.
Для того чтобы показать важность формирования рассмотренных элементарных логических приемов, проанализируем один из труднейших методов доказательства, с которым ученики встречаются при изучении геометрии, - доказательство методом от противного. Легко показать, что в его содержание входят в основном рассмотренные нами простейшие логические операции. В самом деле, прежде всего при доказательстве методом от противного строится предположение, что объект, данный в условии теоремы, не обладает теми свойствами, которые указаны в заключении теоремы.
Так, например, в одной из теорем о параллельных прямых говорится, что если при пересечении двух прямых третьей накрест лежащие углы равны, то прямые параллельны.
Мы допускаем, что прямые не параллельны. В основе этого лежит так называемая дихотомическая классификация: все прямые на плоскости мы можем поделить на два класса - пересекающиеся и не пересекающиеся, т.е. параллельные. Это значит, что данные нам в условии теоремы прямые обязательно должны относиться к одному из этих классов.
Если мы докажем, что прямые не относятся к одному, то они обязательно должны относиться ко второму классу.
Мы предполагаем, что они относятся к пересекающимся прямым. После этого мы пользуемся вторым известным уже нам действием - действием выведения следствий: мы начинаем получать последовательно все те свойства, которые необходимо следуют из факта принадлежности прямых к классу пересекающихся. Постепенно мы доходим до такого свойства, которое противоречит данным условиям. Значит, с одной стороны, если прямые относятся к пересекающимся, то они обязаны обладать выведенным свойством, но нам известно, что они этим свойством не обладают. А раз прямые не обладают хоть одним свойством из системы необходимых, то они не могут относиться к данному классу объектов. Но если они не относятся к пересекающимся, то они могут относиться к не пересекающимся, т.е. к параллельным.
Итак, этот прием, обычно плохо понимаемый учащимися даже старших классов, оказывается построен на нескольких простых действиях: дихотомической классификации, выведении следствий, на понятии необходимых свойств. Если все эти компоненты сформировать, то, как показали опыты, учащиеся успешно усваивают и доказательство методом от противного, и доказательства другими методами, что сейчас у большинства учеников вызывает затруднения даже в старших классах.
Мы рассмотрели первый компонент познавательной деятельности - логические приемы мышления. Важность их формирования у учащихся не требует доказательств, это очевидно. Именно поэтому задача формирования логического мышления ставится перед всеми учителями, при изучении всех предметов. Однако такая общая постановка задачи явно недостаточна. Как мы видели, логическое мышление нельзя формировать с любого приема: они связаны между собой внутренней логикой, поэтому могут быть сформированы только в определенной последовательности.
Второе важное положение состоит в том, что приемы логического мышления оказываются не усвоенными значительным числом школьников не только в начальных классах, но и в старших. Объясняется это тем, что в процессе обучения учителя не делают их предметом специального усвоения, не раскрывают перед учащимися их структуру, не формируют тех логических понятий, которые необходимы для понимания и правильного выполнения логических приемов мышления.
Вывод, который вытекает из всего вышесказанного, заключается в том, что уже в начальной школе при построении содержания обучения необходимо предусмотреть всю систему логических приемов мышления, необходимых для работы с планируемыми предметными знаниями, для решения задач, предусмотренных целями обучения. При этом важно отметить, что хотя логические приемы формируются и используются на каком-то конкретном предметном материале, в то же время они не зависят от этого материала, носят общий, универсальный характер. В силу этого логические приемы, будучи усвоены при изучении одного учебного материала, могут в дальнейшем широко применяться при усвоении других учебных предметов как готовые познавательные средства.
Следовательно, при отборе логических приемов, которые должны быть усвоены при изучении какого-то предмета, следует учитывать межпредметные связи. Если какие-то логические приемы мышления были сформированы ранее - при изучении предыдущих предметов, то при усвоении данного предмета нет необходимости формировать их заново. Эти приемы просто используются для усвоения данных знаний. Предметом специального усвоения должны быть только такие логические приемы, с которыми учащиеся встречаются впервые.
5.2 Психологические умения
Как часто учитель, обращаясь к детям, предлагает им послушать, посмотреть, запомнить, быть внимательным. Если ученики овладели всеми этими умениями, то от учителя ничего больше и не требуется, кроме как активно использовать возможности детей.
А если учащиеся не обладают этими умениями? Ведь люди не рождаются с ними. Чтобы увидеть, писал И.М. Сеченов, надо уметь смотреть; чтобы услышать - надо уметь слушать. К сожалению, учителя, как правило, не заботятся о формировании этих необходимых умений. Не всегда школа формирует и рациональные приемы запоминания. Ведь не секрет, что подавляющее большинство школьников при подготовке домашних заданий использует чисто механическое запоминание: многократное чтение и почти дословное пересказывание. Хорошо известно, как непродуктивны эти приемы запоминания. Иногда через день-два ребенок уже ничего не помнит из того, что так бойко рассказывал на уроке. И виноват в этом учитель, который не научил рациональным приемам запоминания. Выход у ученика только один: пользоваться тем, чем располагает. Именно поэтому так распространена «зубрежка». Это малоэффективное средство обладает в то же время одним большим преимуществом: оно универсально, может быть использовано при запоминании любого материала. Как ни странно, но к механическому запоминанию прибегают не только младшие школьники, но и старшеклассники и даже студенты. Больше того, немало еще учителей, которые не только не борются с этим нерациональным способом запоминания, а, наоборот, считают, что его надо укреплять.
Приведем один поразивший нас пример. Известно, что в начальной школе дети выучивают наизусть немало стихотворении. И вот большой группе учителей был задан вопрос, касающийся роли стихотворений в познавательной деятельности учащихся. Среди ответов был и такой: «Стихотворения играют большую роль в развитии механической памяти детей».
Не будем обижаться за поэзию, которой уготован такой неблагодарный удел, но пожалеем школьников, которые вынуждены ежедневно заниматься изнуряющей, неинтересной и неблагодарной работой по заучиванию самого разного учебного материала. Психологическая наука уже давно не только доказала неэффективность механического заучивания, но и разработала приемы осмысленного запоминания. Как дальше будет показано, прочное запоминание можно обеспечить вообще без заучивания.
Нет необходимости доказывать, что приемы осмысленного запоминания нужны не только в учебной деятельности, но и во многих других ее видах, выполняемых человеком на протяжении жизни.
Другим важным умением, необходимым для любой деятельности, является умение быть внимательным.
Психолог Н.В. Кузьмина опросила около 400 учителей разных классов и разных уровней мастерства. Оказалось, что среди трудностей, которые испытывают учителя, первое место занимает проблема воспитания внимания учащихся. Характерно, что даже учителя-мастера, которые успешно справляются со многими другими трудностями, указывают на задачу воспитания внимания как наиболее сложную для них. Это говорит о том, что здесь существуют объективные трудности. И это действительно так. внимание доставляет много хлопот не только учителям, но и исследователям-психологам. Главная трудность состояла в том, что долгое время ученые не могли правильно установить роль внимания в познавательной деятельности человека. С одной стороны, совершенно очевидно, что роль внимания велика во всех видах деятельности, в том числе и учебной, но в чем конкретно эта роль состоит, до последнего времени оставалось неясным. Поэтому учитель получал множество общих рекомендаций, но все они касались не внимания, а каких-то других сторон деятельности учащихся.
Особенность большинства рекомендаций заключается в том, что в них предлагается воздействовать на внимание косвенным путем. Одни считают, что надо воспитывать в ребенке убежденность, сознательное отношение к знаниям, волю, твердость характера и т.д. Это означает, что воспитание внимания должно идти через организацию всей системы обучения и воспитания школьника. Для первоначальной организации внимания на уроке подчеркивается важность доступности изложения материала, его наглядности и т.д.
Можно назвать десятки общих рекомендаций, которые, однако, все направлены на формирование не внимания как такового, а различных сторон личности школьника, его психического развития в целом1. А в объемном перечне рекомендаций нет ни одной, которая касалась бы непосредственно внимания, т.е. указывала бы прямой путь к воспитанию умения быть внимательным.
1 См., например: Гоноблин Ф.Н. внимание и его воспитание. - М., 1972.
Только в 70-х гг. нашего столетия П.Я. Гальпериным было установлено, что внимание выполняет контрольную функцию, и его воспитание надо начинать с обучения учащихся контролю. Внешний контроль, превращенный в контроль внутренний, автоматизированный, и есть внимание. И теперь можно дать учителю конкретную методику, как работать с учащимися, у которых внимание не сформировалось в их прошлом опыте. Понятно теперь, почему так велика роль внимания в учебной, как и во всякой другой деятельности2.
2 Гальперин П.Я., Кабыльницкая С.Л. Экспериментальное формирование внимания. - М., 1974.
Не останавливаясь на других общих умениях, отметим лишь, что многие из них необходимо формировать у учащихся в начальной школе, чтобы обеспечить им успешное выполнение не только учебной, но и других видов деятельности: трудовой, спортивной и т.д. К числу таких умений относится умение планировать свою деятельность, а также время жизнедеятельности в целом; умение сотрудничать с другими людьми и др.
5.3 Специфические приемы познавательной деятельности
Полноценное усвоение знаний предполагает также формирование таких познавательных действий, которые составляют специфические приемы, характерные для той или иной области знаний. Своеобразие этих приемов состоит в том, что их формирование возможно только на определенном предметном материале. Так, нельзя, например, сформировать приемы математического мышления, минуя математические знания; нельзя сформировать лингвистическое мышление без работы над языковым материалом. Без формирования специфических действий, характерных для данной области знаний, не могут быть сформированы и использованы и логические приемы. В частности, большинство рассмотренных нами приемов логического мышления связано с установлением наличия в предъявленных предметах и явлениях необходимых и достаточных свойств. Однако обнаружение этих свойств в разных предметных областях требует использования разных приемов, разных методов, т.е. требует применения уже специфических приемов работы: в математике они одни, в языке - другие и т.д.
Эти приемы познавательной деятельности, отражая специфические особенности данной научной области, менее универсальны, не могут быть перенесены на любой другой предмет. Так, например, человек, великолепно владеющий специфическими приемами мышления в области математики, может не уметь справиться с историческими задачами, и наоборот. Когда говорят про человека, что у него, допустим, технический склад ума, это и означает, что он овладел основной системой специфических приемов мышления в данной области. Однако и специфические виды познавательной деятельности нередко могут быть использованы в целом ряде предметов.
Примером может служить обобщенный прием получения графических изображений. Анализ частных видов проекционных изображений, изучаемых в школьных курсах геометрии, черчения, географии, рисования и соответствующих им частных видов деятельности, позволил выделить следующее инвариантное содержание умения по получению проекционных изображений:
- а) установление способа проецирования;
- б) определение способа изображения базисной конфигурации по условию задачи;
- в) выбор базисной конфигурации;
- г) анализ формы оригинала;
- д) изображение элементов, выделенных в результате анализа формы оригинала и принадлежащих одной плоскости, с опорой на свойства проекций;
- е) сравнение оригинала с его изображением.
Каждый конкретный способ изображения проекций в указанных предметах представляет собой лишь вариант данного. В силу этого формирование приведенного вида деятельности на материале геометрии обеспечивает учащимся самостоятельное решение задач на получение проекционных изображений в черчении, географии, рисовании. Это означает, что межпредметные связи должны реализовываться по линии не только общих, но и специфических видов деятельности. Что касается планирования работы по каждому отдельному предмету, то учителю необходимо заранее определить последовательность введения в учебный процесс не только знаний, но и специфических приемов познавательной деятельности.
В школе открываются большие возможности для формирования различных приемов мышления. Уже в начальных классах надо заботиться не только о математических и языковых приемах мышления, но и таких, как биологические, исторические. В самом деле, ведь учащиеся сталкиваются в начальных классах и с природоведческим, и обществоведческим материалом. Поэтому очень важно научить школьников методам анализа, характерным для данных областей знаний. Если ученик просто запомнит несколько десятков природоведческих названий и фактов, то он все равно не сможет понять законы природы. Если школьник овладеет приемами наблюдения за объектами природы, методами их анализа, установления причинно-следственных связей между ними, это будет началом формирования собственно биологического склада ума. Совершенно аналогично положение и с обществоведческими знаниями: надо учить не пересказывать их, а использовать для анализа различных социальных явлений.
Таким образом, каждый раз, когда учитель знакомит детей с новой предметной областью, он должен задуматься над теми специфическими приемами мышления, которые характерны для данной области, и постараться сформировать их у обучаемых.
Учитывая, что наибольшие затруднения у школьников вызывает математика, более подробно остановимся на приемах математического мышления. Дело в том, что если учащиеся не овладели этими приемами, то они, изучив весь курс математики, так и не научаются думать математически. А это означает, что математика изучена формально, что учащиеся не поняли ее специфических особенностей.
Так, учащиеся третьего класса уверенно и быстро складывают многозначные числа столбиком, уверенно указывая, что писать под чертой, что «замечать» наверху. Но задайте вопрос: «А почему надо так делать? Может быть, лучше наоборот: замеченное записывать под чертой, а записанное заметить?» Многие ученики теряются, не знают, что ответить. Это означает, что ученики выполняют арифметические действия успешно, но их математического смысла не понимают. Правильно производя сложение и вычитание, они не понимают принципов, лежащих в основе системы счисления и в основе выполняемых ими действий. Для того чтобы производить арифметические действия, надо прежде всего понять принципы построения системы счисления, в частности зависимость величины числа от его места в разрядной сетке.
Не менее важно научить учеников понимать, что число - это отношение, что числовая характеристика - результат сравнения интересующей величины с каким-то эталоном. Это означает, что одна и та же величина будет получать разную числовую характеристику при сравнении ее с разными эталонами: чем больше эталон, которым мы будем измерять, тем меньше будет число, и наоборот. Значит, не всегда обозначенное тремя меньше обозначенного пятью. Это верно лишь в том случае, когда величины измерены одним и тем же эталоном (мерой). Необходимо научить школьников прежде всего выделять те стороны в объекте, которые подлежат количественной оценке. Если на это не обратить внимания, то у детей сформируется неправильное представление о числе. Так, если показать учащимся первого класса ручку и спросить: «Дети, скажите, это сколько?» - они обычно отвечают, что одна. Но ведь этот ответ верен только в том случае, когда за эталон берется отдельность. Если же за измеряемую величину взять длину ручки, то числовая характеристика может быть разной, она будет зависеть от выбранного для измерения эталона: см, мм, дм и т.д.
Следующее, что должны усвоить учащиеся: сравнивать, складывать, вычитать можно только измеренное одной и той же мерой. Если ученики это понимают, то они смогут и обосновать, почему при сложении столбиком одно записывается под чертой, а другое замечается над следующим разрядом: единицы остаются на своем месте, а образованный из них десяток должен суммироваться с десятками, поэтому его и «замечают» над десятками, и т.д.
Усвоение этого материала обеспечивает полноценные действия и с дробями. В этом случае учащиеся смогут понять, почему необходимо приведение к общему знаменателю: это фактически приведение к общей мере. В самом деле, когда мы складываем, допустим, 1/3 и 1/2, это означает, что в одном случае единицу разделили на три части и взяли одну из них, в другом - на две части и тоже взяли одну из них. Очевидно, что это разные меры. Складывать их нельзя. Для сложения необходимо привести их к единой мере - к общему знаменателю.
Наконец, если учащиеся усвоят, что величины можно измерять различными мерами и поэтому их числовая характеристика может быть разной, то они не будут испытывать трудностей и при движении по разрядной сетке системы счисления: от единицы - к десяткам, от десятков - к сотням, тысячам и т.д. Для них это будет выступать всего лишь как переход к измерению все большими и большими мерами: измеряли единицами, а теперь меру увеличили в десять раз, поэтому то, что обозначалось как десять, теперь стало обозначаться как один десяток. Собственно, только мерой и отличается один разряд системы счисления от другого. В самом деле, три плюс пять всегда будет восемь, но это может быть и восемь сотен, и восемь тысяч и т.д. То же самое и при десятичных дробях. Но в этом случае мы меру не увеличиваем в десять раз, а уменьшаем, поэтому получаем три плюс пять тоже восемь, но уже десятых, сотых, тысячных и т.д.
Таким образом, если учащимся раскрыть все эти «секреты» математики, то они легко будут понимать и усваивать ее. Если же этого не сделать, то ученики будут механически производить различные арифметические действия, не понимая их сути и, следовательно, не развивая своего математического мышления. Таким образом, формирование уже самых начальных знании должно быть организовано так, чтобы это было одновременно и формированием мышления, определенных умственных способностей учащихся.
Аналогичное положение и с другими предметами. Так, успешное овладение русским языком также невозможно без овладения специфическими языковыми приемами мышления. Нередко учащиеся, изучая части речи, члены предложения, не понимают их языковой сущности, а ориентируются на их место в предложении или учитывают лишь формальные признаки. В частности, учащиеся не всегда понимают суть главных членов предложений, не умеют их узнавать в несколько непривычных для них предложениях. Попробуйте дать ученикам средних и даже старших классов предложения типа: «Ужин только что подали», «Басни Крылова читали все», «Листовки разносит ветром по городу». Многие ученики назовут подлежащим прямое дополнение.
Почему ученики затрудняются в определении подлежащего в предложениях, где подлежащего нет, где оно лишь подразумевается? Да потому, что они до сих пор имели дело только с такими предложениями, где подлежащие были. И это привело к тому, что они фактически не научились ориентироваться на все существенные признаки подлежащего одновременно, а довольствуются лишь одним: или смысловым, или формальным. Собственно, грамматические приемы работы с подлежащим у учащихся не сформированы.
язык, как и математику, можно изучать по существу, т.е. с пониманием его специфических особенностей, с умением опираться на них, пользоваться ими. Но это будет только в том случае, когда учитель формирует необходимые приемы языкового мышления. Если же об этом должной заботы не проявляется, то язык изучается формально, без понимания сути, а поэтому и не вызывает интереса у учащихся.
Следует отметить, что иногда необходимо формировать такие специфические приемы познавательной деятельности, которые выходят за рамки изучаемого предмета и в то же время определяют успех в его овладении. Особенно ярко это проявляется при решении арифметических задач.
Для того чтобы понять особенности работы с арифметическими задачами, прежде всего ответим на вопрос: в чем состоит отличие решения задачи от решения примеров? Известно, что ученики гораздо легче справляются с примерами, чем с задачами. Известно также, что главное затруднение состоит обычно в выборе действия, а не в его выполнении. Почему так происходит и что значит выбрать действие? Вот первые вопросы, на которые надо ответить.
Отличие решения задач от решения примеров состоит в том, что в примерах все действия указаны, и ученик должен лишь выполнить их в определенном порядке. При решении же задачи школьник прежде всего должен определить, какие действия необходимо совершить. В условии задачи всегда описана та или иная ситуация: заготовка корма, изготовление деталей, продажа товаров, движение поездов и т.д. За этой конкретной ситуацией ученик должен увидеть определенные арифметические отношения. Другими словами, он должен фактически описать приведенную в задаче ситуацию на языке математики.
Естественно, что для правильного описания ему надо не только знать саму арифметику, но и понимать сущность основных элементов ситуации, их отношения. Так, при решении задач на «куплю-продажу» ученик может правильно действовать только тогда, когда понимает, что такое цена, стоимость, какие отношения между ценой, стоимостью и количеством товара. Учитель часто полагается на житейский опыт школьников и не всегда уделяет достаточное внимание анализу описанных в задачах ситуации.
Если при решении задач на «куплю-продажу» учащиеся имеют какой-то житейский опыт, то при решении задач, например, на «движение» их опыт оказывается явно недостаточным. Обычно этот вид задач вызывает у школьников затруднения.
Анализ этих видов задач показывает, что основу описываемого в них сюжета составляют величины, связанные с процессами: скорость поездов, время протекания процесса, продукт (результат), к которому приводит этот процесс или который он уничтожает. Это может быть путь, проделанный поездом; это может быть израсходованный корм и т.д. Успешное решение этих задач предполагает правильное понимание не только этих величин, но и существующих между ними отношений. Так, например, ученики должны понимать, что величина пути или производимого продукта прямо пропорциональна скорости и времени. Время, необходимое для получения какого-либо продукта или для прохождения пути, прямо пропорционально величине заданного продукта (или пути), но обратно пропорционально скорости: чем больше скорость, тем меньше время, требуемое для получения продукта или прохождения пути. Если учащиеся усвоят отношения, существующие между этими величинами, то они легко поймут, что по двум величинам, относящимся к одному и тому же участнику процесса, всегда можно найти третью. Наконец, в процессе может участвовать не одна, а несколько сил. Для решения этих задач необходимо понимать отношения между участниками: помогают они друг другу или противодействуют, одновременно или разновременно включились в процессы и т.д.
Указанные величины и их отношения и составляют сущность всех задач на процессы. Если учащиеся понимают эту систему величин и их отношения, то они легко смогут и записать их с помощью арифметических действий. Если же они их не понимают, то действуют путем слепого перебора действий. По школьной программе учащиеся изучают эти понятия в курсе физики в шестом классе, причем изучают эти величины в чистом виде - применительно к движению. В арифметике же задачи на различные процессы решаются уже в начальной школе. Этим и объясняются затруднения учащихся.
Работа с отстающими учениками третьего класса показала, что ни одно из указанных понятий ими не усвоено. Школьники не понимают и отношений, существующих между этими понятиями.
На вопросы, касающиеся скорости, ученики давали такие ответы: «Скорость у машины имеется, когда она идет». На вопрос, как можно узнать скорость, учащиеся отвечали: «Не проходили», «Нас не учили». Некоторые предлагали умножить путь на время. Задачу: «За 30 дней была построена дорога длиной 10 км. Как узнать, сколько километров строилось за 1 день?» - ни один из учащихся не смог решить. Не владели учащиеся понятием «время процесса»: они не дифференцировали таких понятий, как момент начала, допустим, движения и время движения. Если в задаче говорилось, что поезд вышел из какого-то пункта в 6 часов утра, то учащиеся принимали это за время движения поезда и при нахождении пути скорость умножали на 6 часов. Оказалось, что испытуемые не понимают и отношений между скоростью процесса, временем и продуктом (пройденным путем, например), к которому этот процесс приводит. Никто из учащихся не смог сказать, что ему надо знать, чтобы ответить на вопрос задачи. (Даже те ученики, которые справляются с решением задач, не всегда умеют ответить на этот вопрос.) Значит, для учащихся величины, содержащиеся в условии и в вопросе задачи, не выступают как система, где эти величины связаны определенными отношениями. А именно понимание этих отношений и дает возможность сделать правильный выбор арифметического действия.
Все сказанное приводит нас к выводу: трудности в решении арифметических задач часто лежат за пределами арифметики как таковой. Главным условием, обеспечивающим успешное решение арифметических задач, является понимание учениками той ситуации, которая описана в задаче. Отсюда следует, что при изучении арифметических задач необходимо формировать приемы анализа таких ситуаций, которые являются не арифметическими, а физическими, экономическими и т.д.
Когда ученик не может решить задачу, ему нередко советуют получше подумать. Совет дать легко, но выполнить его ученик не всегда может, так как часто задача не выходит именно потому, что ученик не умеет думать. Учитель, желая помочь ему, должен показать, что же надо сделать, чтобы «подумалось». Но для этого и надо знать, из каких умственных действий состоит процесс решения любой задачи данного класса, в каком порядке они должны выполняться.
5.4 Взаимосвязь общих и специфических знаний и умений
В учебном процессе рассмотренные нами виды познавательной деятельности (виды умений) функционируют не изолированно, а во взаимосвязи друг с другом. Как правило, полноценное усвоение новых знаний предполагает использование как специфических, так и логических действий. Поэтому при построении содержания обучения по предмету и определении последовательности его изучения необходимо учитывать связи и взаимоотношения по трем линиям: а) предметные, специфические, знания; б) специфические виды деятельности; в) логические приемы мышления и входящие в них логические знания. И хотя выделение компонентов, составляющих содержание обучения условно, для удобства анализа их следует рассмотреть вначале по отдельности. Прежде всего необходимо установить логику предметных (специфических) знаний: построить модели логических связей между понятиями, закономерностями и т.д. Аналогичная работа должна быть проделана по отношению к специфическим видам деятельности и логическим приемам мышления. В результате получится три последовательности: знания (3), специфические виды деятельности (СД), логические приемы мышления (ЛП). Теперь они должны быть соотнесены между собой.
В принципе между знаниями (3), специфическими действиями (СД) и логическими приемами (ЛП) могут быть следующие отношения.
1.
Это означает, что при усвоении каждого нового знания используется новый вид специфической деятельности, которая облекается в новую логическую форму.
Например, при усвоении первого понятия (31) используется действие подведения (ЛП1), при усвоении второго понятия (32) сравнение (ЛП2) и т.д. Одновременно вводятся новые виды специфической деятельности.
2.
В этом случае усваиваемое знание (31) включается сразу в две (или несколько) специфические (СД1 и СД2) деятельности, каждая из которых связана с новым логическим приемом мышления (ЛП1 и ЛП2). Это легко понять, если вернуться к предыдущему примеру, но вместо двух понятий взять одно: оно может усваиваться и с помощью подведения под понятие, и с помощью сравнения.
3.
В этом случае одна и та же специфическая деятельность, один и тот же логический прием используются для усвоения ряда предметных знаний. Так, например, действие подведения под понятие можно использовать при усвоении всех понятий, входящих в содержание обучения, если, разумеется, не требуется формирования других видов деятельности. Три указанных последовательности не равнозначны по эффективности. В первом случае школьник последовательно обогащается не только знаниями, но и общими, и специфическими приемами их использования. Во втором случае ученик, приступая к изучению предмета, получает максимально возможное число новых видов познавательной деятельности. Знаний он приобрел мало, но его познавательные возможности существенно увеличились, что, очевидно, положительно скажется на изучении последующих разделов предмета. Кроме того, усвоение введенных знаний характеризуется многосторонностью, возможностью использования их при решении различного вида задач. В третьем случае ученик получил уже много знаний, но глубина усвоения их незначительна: все они могут быть использованы лишь в одном виде деятельности - для решения одного класса задач.
Итак, познавательная деятельность - это не что-то аморфное, а всегда система определенных действий и входящих в них знаний. Это означает, что познавательную деятельность следует формировать в строго определенном порядке, считаясь с содержанием слагающих ее действий.
Планируя изучение нового предметного материала, учителю прежде всего необходимо определить логические и специфические виды познавательной деятельности, в которых должны функционировать эти знания. В одних случаях это познавательные действия, которые уже усвоены учащимися, но теперь они будут использоваться на новом материале, их границы применения расширятся. В других случаях учитель научит школьников использовать новые действия.
Конкретная программа видов деятельности по каждому предмету определяется целями его изучения. Цели же изучения необходимо формулировать не в терминах «прочно знать», «творчески использовать» и других общих словах, а на языке задач, понимаемых в широком смысле этого слова. Разумеется, при изучении каждого предмета может быть такой материал, который надо просто запомнить. Задача здесь состоит только в том, чтобы уметь вовремя вспомнить, воспроизвести этот материал. Но такого рода цели не являются типичными. Запоминание даже дат жизни писателей, поэтов должно быть не самоцелью, это должно помогать решать задачи, связанные с анализом их творчества, всегда отражающего ту эпоху, в которой они жили и творили.
Вывод из всего сказанного прост: прежде чем требовать от учеников пересказа того или иного параграфа учебника, спросите себя: а зачем? Не лучше ли научить детей как-то пользоваться этим материалом, решать с его помощью различные познавательные задачи. И начните с определения этих задач.
5.5 Умение учиться
Главное лицо в учебном процессе - ученик. Усилия учителя направлены на то, чтобы он учился. Для этого необходимо, чтобы ученик хотел учиться и мог это делать. Часто ребенок идет в школу с большим желанием учиться, но без умения это делать. Если не научить ребенка учиться, то с первых же шагов школьной жизни он встретится с трудностями, неудачами, которые постепенно угасят и его желание учиться.
Из чего же состоит это умение? Оно включает в себя действия всех трех видов, которые были рассмотрены нами выше. Эти действия вначале входят в деятельность учения как предмет усвоения, их ученик должен усвоить. После усвоения их, когда они уже войдут в состав познавательной деятельности учащегося, эти действия могут использоваться как средства усвоения новых действий, войти в состав умения учиться.
Таким образом, в деятельности учения одно и то же действие может занимать разное место: вначале быть предметом усвоения, а потом - его средством. И каждый раз, когда ученик усваивает новые действия, он должен располагать средствами их усвоения - уметь усвоить. Другими словами, деятельность учения состоит из двух составляющих: ученик должен выполнить усваиваемое действие и действия, которые обеспечивают усвоение первого с заданными свойствами. Так, при освоении счета ребенок должен перейти от реальной палочки, лежащей перед ним, к слову «один». Между этими двумя объектами внешне нет никакого сходства, но они заменяют друг друга, и ребенок должен уметь перекодировать действие из одной нормы в другую. Вся совокупность действий, необходимых для успешного усвоения новых, и составляет умение учиться этим новым действиям. Это и есть вторая составляющая деятельности учения. Графически это можно изобразить так:
Если мы не обеспечили умения учиться, то процесс усвоения новых действий не будет протекать успешно, как бы мы ни старались его организовать. Это означает, что, прежде чем приступать к обучению новому действию, необходимо проверить, располагают ли учащиеся умением научиться этому действию. Другими словами, для успешного протекания процесса усвоения ученик должен иметь соответствующий исходный уровень своей познавательной деятельности. Этот исходный уровень должен проверяться: а) со стороны наличия действий, на которые опирается новое; б) со стороны умения учиться, т.е. наличия действий, которые необходимы для понимания нового, для того, чтобы перейти от внешней, материальной формы его выполнения к выполнению во внутренней, умственной форме.
Как же приобретаются действия, составляющие умение учиться? Они «поставляются» из первой группы действий, которые были предметами усвоения. Другими словами, умение учиться состоит из познавательных действий, которые ранее необходимо было усвоить, приобрести. После этого они используются как средства усвоения новых действий. Так, например, логические приемы мышления вначале должны быть усвоены как специальные предметы усвоения, т.е. войти в состав первой группы действий учения. В дальнейшем логические приемы мышления выступают как познавательные средства, необходимые для успешного усвоения любых учебных предметов, любых умений. Разумеется, усвоенные познавательные действия используются не только в качестве средств усвоения. Они могут быть в дальнейшем средствами трудовой деятельности, использоваться человеком при открытии новых явлений и т.д. Так, логические приемы мышления человек использует в течение всей жизни, при выполнении всех видов деятельности. Больше того, не все усвоенные действия становятся средствами усвоения, т.е. входят в состав деятельности учения. Некоторые из них усваиваются специально, например, для труда.
Из сказанного вытекают следующие положения:
- Действия, составляющие умение учиться, необходимо усвоить так же, как любые другие действия. Это означает, что все действия, входящие в умение учиться (вторая группа действий), ранее были предметами усвоения (входили в первую группу действий).
- Действия, составляющие умение учиться, не являются уникальными, пригодными только для учения. Они могут входить в состав других видов человеческой деятельности.
Следовательно, умение учиться состоит из разного вида познавательных действий, направленных на получение новых знаний, новых операциональных систем. Эти действия объединяются в умение учиться по выполняемой ими функции: они являются познавательными средствами.
В умение учиться входят действия как общие, так и специфические. Ранее мы выделили в общих видах действий две группы: психологические и действия, составляющие приемы логического мышления.
Но общие виды деятельности этим не исчерпываются. К числу общих относятся и такие действия, как планирование, контроль, оценивание, корректирование своей деятельности. Все эти действия входят и в умение учиться. Учащиеся должны, выполняя новое действие, контролировать ход выполнения, опираясь на данный им образец. Контроль неизбежно требует оценивания - насколько правильно выполняется действие. В случае обнаружения отклонения, ошибки, учащийся должен уметь скорректировать выполнение действия.
В умение учиться обязательно входят знаково-символические действия: моделирование, кодирование, декодирование. Эта группа действий, с одной стороны, является общей, так как необходима при усвоении любого учебного предмета. Но в то же время каждый предмет имеет свою систему знаковых средств, которые ученик должен уметь использовать в процессе усвоения.
Указанные группы общих действий важны для усвоения любых знаний и умений. Специфические действия - для усвоения только каких-то определенных.
Учитель, приступая к изучению любого предмета, любой темы, должен быть уверен, что учащиеся владеют всеми необходимыми познавательными средствами для усвоения этого предмета. Если не владеют - необходимо сформировать недостающие действия или в ходе работы с предметным материалом, или до этого.
Контрольные вопросы
- Почему действия, составляющие логические приемы мышления, считаются общими?
- Каково содержание действия сравнения? Из каких компонентов оно состоит?
- Можно ли начинать формирование логического мышления с любого приема?
- Как определить порядок формирования логических приемов мышления?
- Из каких действий состоит умение учиться? Можно ли его сформировать в начальной школе? Почему вы так думаете?
- Каково соотношение знаний и действий?
- Чем определяется выбор действий, которые необходимо сформировать у школьников при изучении того или иного предмета?
- Назовите несколько специфических действий, которые необходимы при изучении родного языка
Литература
- Никольская И.Л. Азбука рассуждения - М, 1996.
- Никольская И.Л., Тигранова Л.И. Гимнастика для ума - М , 1997
- Столяр А.А. Математические игры для детей 5-6 лет - М, 1991